Lisää ja vähennä positiivisia ja negatiivisia kokonaislukuja välittömillä tuloksilla ja vaiheittaisilla selityksillä
Kokonaisluvut ovat kokonaisia lukuja, jotka voivat olla positiivisia, negatiivisia tai nolla. Kokonaislukujen yhteen- ja vähennyslasku on perusmatematiikan toiminto, jota käytetään jokapäiväisessä elämässä lämpötilojen laskemisesta pakkasen alapuolella pankkitilien saldojen seuraamiseen. Kokonaislukujen Yhteen- ja Vähennyslaskimme helpottaa näiden toimintojen suorittamista nopeasti ja tarkasti, työskenteletpä sitten positiivisten lukujen, negatiivisten lukujen tai molempien yhdistelmän kanssa.
Kokonaislukuja laskettaessa yhteen säännöt riippuvat siitä, onko luvuilla sama vai eri etumerkki. Jos molemmat kokonaisluvut ovat positiivisia (esim. 5 + 3 = 8), laske ne yhteen tavalliseen tapaan. Jos molemmat kokonaisluvut ovat negatiivisia (esim. -5 + -3 = -8), laske niiden itseisarvot yhteen ja säilytä negatiivinen etumerkki. Kun lasket yhteen eri etumerkkisiä kokonaislukuja (esim. 5 + -3 = 2 tai -5 + 3 = -2), vähennä pienempi itseisarvo suuremmasta itseisarvosta ja käytä suuremman itseisarvon omaavan luvun etumerkkiä.
Kokonaislukujen vähennyslasku noudattaa yksinkertaista sääntöä: luvun vähentäminen on sama kuin sen vastaluvun lisääminen. Vähentääksesi kokonaisluvun, muuta vähennysmerkki yhteenlaskuksi ja muuta vähennettävän luvun etumerkki. Esimerkiksi 5 - 3 tulee 5 + (-3) = 2, ja 5 - (-3) tulee 5 + 3 = 8. Tämä sääntö pätee kaikkiin kokonaislukujen vähennyslaskuongelmiin, mikä helpottaa negatiivisten lukujen käsittelyä. Tämän periaatteen ymmärtäminen auttaa välttämään yleisiä virheitä kaksoisnegatiivien käsittelyssä.
Positiivinen + Positiivinen: 7 + 4 = 11. Negatiivinen + Negatiivinen: -7 + (-4) = -11. Positiivinen + Negatiivinen: 7 + (-4) = 3. Negatiivinen + Positiivinen: -7 + 4 = -3. Vähennyslaskuesimerkit: 7 - 4 = 3, 7 - (-4) = 11, -7 - 4 = -11, -7 - (-4) = -3.
Kokonaislukutoiminnot ovat välttämättömiä monissa tosielämän sovelluksissa: lämpötilamuutokset (siirtyminen -5°C:sta 3°C:een on 8 asteen nousu), rahoitustapahtumat (talletukset ja nostot), korkeusmuutokset (merenpinnan ylä- ja alapuolella), urheilupisteet (voitot ja tappiot) ja tieteelliset mittaukset. Kokonaislukujen yhteen- ja vähennyslaskun hallitseminen rakentaa vankan perustan edistyneemmälle matematiikalle, mukaan lukien algebra, laskutoimitus ja sen lisäksi.